NEBULA SUPPORT SOFTNARE(U) ODYSSEY RESEMRCH ASSOCIATES 14
;gg‘.zﬂssncuz A SHENKER ET AL. OCT 87 RADC-TR-87-179

F/G 12/%

8o 4

WAL AR

T n)

e

l ,
ae s 2 KA A

’

'
!

v

s B BARNA

_Sm Zm
o~ 10 -
u.r

O ¥ og o
Iz,gtha 33

B EFRTI

23

s -

i

16

1.4

—_—
—_—
————]

=y

-

omw ..

-

o_

L

2o o

AU PLEEY

B e PR

2 KL LETLL

Yo RPN

RADC-TR-87-179
Final Technical Report
October 1987

AD-A192 281

NEBULA SUPPORT SOFTWARE ' ¥

- DTIC

ELECTE
;, FEB 05 1988E

o %0l

Odyssey Research Associates

(X, LGN LT

Abraham Shenker, Leonard Silver and George Gessiein

KNSR SN e
L . P

APPROVED FOR PUSLIC RELEASE, DISTIRISLTION LMLMITED

pVRRDOE

. ROME AIR DEVELOPMENT CENTER :":
Air Force Systems Command RS
Griffiss Air Force Base, NY 13441-5700 i’
7

R

88 2 2 070 i

i

L‘:ﬂ;{&f‘{\mﬁﬁ{.ﬁ’t&tﬁ-’ -"i{:_"’ -: A AN "_n".-] ' "2 '...‘_- ‘..\., n.. ot “‘. . et ’-". f_‘ff_’-'..f\',\f '.'\.’ --’:"._"\' LN

LRI SN AT ON A TN I LIS AU IOR IO W R P MO VR VIO T KB EN ER DR S KR TP R W W T 19°210°000 461 0¥ 0 /0 M 0P ' 470 90 '8 B9/

L " ®p

AN

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations. .

3

ZLIT ™ I

RADC-TR-87-179 has been reviewed and is approved for publication.

. v
+ '.
ﬁ.
- ‘ , y -
APPROVED: T 1+ ¢, ¢ ///".‘ﬂrl 751 7/ -
W
FREDERICK A. NORMAND
Project Engineer -
N |

APPROVED: %5%%\ :

CHARLES E. ANDERSON, Lt Col, USAF
Acting Director of Command & Control

=2

Y Y _¥
SO

‘l

FOR THE COMMANDER: @&M& \uQM

[]
RICHARD W. POULIOT it
Directorate of Plans & Programs v
N
[Sa}
b
"
:
£
UK
If your address has changed or if you wish to be removed from the RADC mailing ;'
-11st, or if the addressee is no longer employed by your organization, please 5
notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us in main- o8
tailning a current mailing list. o
Ly
- -
Do not return copies of this report unless contractual obligations or notice tf
on a specific document requires that it be returned. r
i "t
?- f
o
Y'.
»
%
)

T D N N N,

AR ARP I W0 PN T T U NS AN AL A RS R LT T, ol Ca¥ Ny vad vai. ata b’

- ..““” ‘l . v l.. ., - - ' ‘ " u
“
.4
' 1
| e
L]
} W
; CLASSIFIED 0
URITY CLASSIFICATION OF THIS PAGE 't
L)
Form Approved -
REPORT DOCUMENTATION PAGE OMB N 07080188 ey
) 1a. REPORT SECURITY CLASSIFICATION 1. RESTRICTIVE MARKINGS .
UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT
N/A, Approved for public release; distribution
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE -
N/A unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) L.
N/a RADC-TR~87-179
e
6a. NAME OF PERFORMING ORGANIZATION 6b. ?;FICEISYI\DAIB?L 7a. NAME OF MONITORING ORGANIZATION :'\]
. If applicable Y
Odvssey R . :
Inc y Research Associates, Rome Air Development Center (COTC) (C:
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Z2IP Code) 3‘:
1283 Trumansburg Road Griffiss AFB NY 13441-5700
Ithaca NY 14850-1313
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER . w3
ORGANIZATION (If applicable) 4
Rome Air Development Center COTC F30602-84-C-0182 Rt
"
8¢. ADORESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS b
o PROGRAM PROJECT TASK WORK UNIT N
Griffiss AFB NY 13441-5700 ELEMENT NO. | NO NO ACCESSION NO
L 63728F 2529 03 i3 5+
b 11 TITLE (Include Security Classification) < :
. NEBULA SUPPORT SOFTWARE i
12 PERSONAL AUTHOR(S) 5: s
Abraham Shenker (Intermetrics), Leonard Silver, George Gesslein (ORA) \
»
13a. TYPE OF REPORT 136 TIME COVEREOD 14, DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT y
Final fROM _Sep 84 to Jun 87 October 1987 24 -
16. SUPPLEMENTARY NOTATION "4
N/A :._:
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse f necessary and :dentify by block number) ::-’
FIELD GROUP SUB-GROUP Nebula Port Unix Kernel -"
12 05 Instruction Set Architecture -
Retarget C-Compiler =,
‘\\1 ABSTRACT (Continue on reverse f necessary and :dentify by block number) !
his is the final report for the Nebula Support Software contract, RADC contract t.
F30602-84-C-0182. ™t provides a Unix-based capability on the VAX-11/780 which supported)
the development of software targeted for execution on the Nebula computer operating under o
the control of a native-Unix system. This effort consisted of two tasks - the first was e
. v
the retarget of the System V c-compiler and c-library to the Nebula Instruction Set)
Architecture (ISA), and the second was the port of the System V kernel to the Nebula ~
Brassboard System developed by CDC. The code generated by the retargeted c-compiler et
will be run on the Nebula simulator and on the RADC Brassboard implementation of the 7
Nebula ISA.,\)
W
\.’)
- -
20 OISTRIBUTION / AVAILABILITY OF A8STRACT 21 ABSTRACT SECURITY CLASSIFICATION l—‘r '-.,.
@ UNCLASSIFIEOUNUMITED (T SAME AS RPT (T DTIC USERS UNCLASSIFIED P o
223 NAME OF RESPONSIBLE 'NDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE 5YMBOL e
Frederick A. Normand (315) 330-2925 RADC (COTC) Rt
o
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF “WiS PAGE

UNCLASSIFIED ——

e g a4

. - e e -

i

1. Introduction

1.1 Identification

This report is the Final Report for the Nebula Support
Software contract, RADC contract No. F30602~-84-C-0182. It
presents the results of the effort. The tasks and technical
requirements for the Nebula Support Software effort are fully
discussed in the Nebula Support Software Statement of Work
(Revised January 11, 1984, PR No. B-4-3133). '

1.2 Project Overview

The objective of the Nebula Support Software effort is to
provide a Unix-based capability on the VAX-11/780 which supports
the development of software targeted for execution on the Nebula
computer operating under control of a native Unix system. This

ffort has been divided into two tasks:

1. Retarget the System V C compiler and C library for the
Nebula ISaA

2. Port the System V Kernel to the Nebula Brassboard System
The code generated by the retargeted C compiler will be run

on the Nebula simulator and on the RADC Brassboard implementation
of the Nebula Instruction Set Architecture.

2. Project Results

The retarget of the System V C compiler has been success-
fully completed. The C compiler is hosted on VAX/EUNICE, and
generates assembly language compatible with Nebula assembler.

The assembly language generated by the C compiler has been suc-
cessfully assembled using the Nebula assembler, linked by the
Nebula linker and executed under control of the Nebula simulator.

Testing the compiler on the Brassboard implementation 1is complete.

B 2

T eyt e o o et b S O R R S R AV A T Lt

I

>

-

FEPLEId

2
-

AA AL,

, S

per A

* =
4
»

ety

PRI

NIRRT e

L]
-

PR had

RS

PR

A TR

&S

-'.,'-,-' -
- -

-

VLS b
' S

‘

el e R R O O T I T R O W W W W T ¢ 2de® b v . P ol® PR 0 e e S B 0 Y R MRy
: AKX L, W i

a W By W W Wy Vg g &y ad s ala

"

3$ -2 -

D)

0

’

i 2.1 Eyaluation of Retarget Approach

X The approach taken was to retarget the VAX System V Release
™) 2.0 C compiler. This compiler was selected because it is easily
N retargeted and totally compatible with the System V Kernel and
kY utilities that will be rehosted. The selection of the System V
A compiler constitutes an exception to the SOW requirement (SOW

paragraph 4.1.1), that the compiler be the same as the VMS/Unix
W\ development environment. The System V C compiler and EUNICE C
compiler have both descended from the Johnson Portable C compiler

i and the lanquages and semantics of the two compilers are highly
compatible.

The VAX System V C compiler is a version of the Johnson
) Portable C Compiler. This compiler is entirely written in C and
'y designed to be easily retargeted. The compiler is organized
N\ along the lines of machine dependent and machine independent
" modules. Most of the instruction generation dependencies are
W encapsulated into a set of code generation tables.

We found the modification of the Johnson Portable C Compiler
to be straight forward. There are aspects of the Nebula Archi- '
tecture that are sufficiently different from most conventional)
architectures that exposed some erroneous assumptions of the :
machine independent portions of the compiler. A few of the
allegedly machine independent modules had to be modified slightly
. for the Nebula retarget. A large portion of the effort was]
o rewriting the code generation tables. This task was greatly sim-
- plified by the similarity of the VAX and Nebula instruction sets
R and argument addressing modes. The register allocator modifica-
N tions also comprised a major component of the retarget effort.
The register allocator was particularly machine dependent because
the VAX C compiler had implicit assumptions regarding the run-
time model and properties of general purpose registers.

LIS LR RS b

The C library was extremely easy to retarget with the excep- 4
tion of the setjmp/longjmp library routines. These library rou- '
tines had a strong dependence on the VAX run-time model and the o
properties of the run-time stack. These routines had to be X
redesigned and recoded from scratch. Most of the other C library
routines only required recompilation.

TCR LA

The development environment selected to perform the retarget
was also a strong factor in the success of this part of the -
effort. Sun workstations (Motorola 68000 based Unix 4.2bsd) pro-
vided an i1deal program development environment. The robust set A
of debugging, configuration management and communication tools
available on the workstations greatly reduced the effort involved
in modifying, debugging and testing the retargeted compiler. The
compiler was entirely debugged using the workstation and then
rehosted to the VMS/EUNICE environment for testing. The C com-

. piler generated code was tested by using the Nebula Assembler and
Nebula Simulator. The RADC supplied Nebula support tools

W Tap 2l A

’ ;

; .

. :

2 ;

AN G N R R A N AT,
L) 4 B n AL B R A N

oV

-y -
w*

Y- _’;.}. . \'\'\{“\ X5

~

. - = e
N O AT

SO0 S A A

- "

R

s g ey Aty ¥ W0 Mal ves v agabe gl ‘2 D00 b Bl 908 fat 9.0 4o N2’ VL 2he gl 2 8 a%h 260" 0.0 0.8 8.8 $.8' ¢ 4 Vol 7.8 Uak dud e

performed very well, and presented only few small obstacles to
overcome.

2.2 Evaluation of Nebula ISA for C

The Nebula ISA instruction set provides a good support for
the C language. The rich set of operand addressing modes sup-
ports C data types nicely. The generalized operand size rules
greatly improves the code generated for expressions involving
different data representations. The register 1 stack provides
good support for local variables. In general, the code quality
(size and instruction count) for C expressions equaled or
exceeded that of the VAX targeted cowpiler.

The Nebula procedure model does not optimally suit the C
language function model. C function arguments must be passed by
value. Since the parameters must be copied, there is little
advantage to using the Nebula parameter passing mechanism.

Al though the Nebula does not provide full hardware support for C
function linkage, the resulting call sequence is only slightly
more cumbersome than that on the VAX, and the implemented call
sequence is not expected to cause seriocus performance problems.

The following weaknesses of the ISA were found when design-
ing the run—time model for the C programming language:

1. Support for subroutine linkage (jsr and rsr) is very weak.
There is no efficient way to save the entire register set of
registers into memory or on the register 1 stack. This
severely limits the utility of subroutines as an alternative
procedure linkage model design.

2. The push unsigned instruction 1s conspicuously missing from
the ISA.

Lo

An indirect register index operand addressing mode would be
very useful. The same effect can be generated using either
an intermediate register or a compound addressing mode. An
indirect register index addressing mode would be very useful
for languaqges like C that rely heavily upon pointers.

The benchmark tests demonstrated that the retargeted compiler
produces code equal to the Vax C compiler.

RA| Summary of Retarget Effort

The VAX System V¢ compiler and C library have been success-
tully retargeted to the Hebula, The Nebula ISA provides a very
good support for C expressions and data accesns. The code quality

"""" Tt SN g Y
'-r > J' Vs f e N I\d',\l (.‘-'~J".-f'\-f_ .-...r,_a,&r\.’\. \/_.r A ., \ \{\ _.r,‘_a ‘ ~...__ oy \ \.r\.r- o \.r,\r yoaTy

e ¥,
Sl

":;;:F"‘t Y o -/'

Ccrre
‘"c'&$" 2

Al

NN W S AR

R

sl
"

IJ %'}‘ “‘,

- -

RN X LR J St X MY MR RN W W WL O W Vo ey

. A W e -

. o> P -

LS N SN

4

Nora

produced by the Nebula C compiler is very close to the guality of
that produced by the VAX compiler.

2.5 Summary of Unix Port)

The Unix system was ported to the Nebula Brassboard. All
non-I1/0 functions have been successfully tested. All I/0 functions
were tested. Many of the tests failed due to hardware problems.
Nebula Unix successfully executes non-1/0 dependent applications.

YV B a8 = =~ > % e = e

IR

.y a . - AP 4
e B e N B e e B S R S R

3. Unix Port Technical Approach

The following sections discuss the general technical

approach to be followed in performing each of the tasks outlined
above.

3.1 Unix Kernel Port

Porting the Unix Kernel to the Nebula will involve rewriting
the machine dependent parts of the VAX Unix Kernel. Some of the
machine dependent code is VAX assembler source code. The VAX
assembler source code will be recoded into Nebula assembler
source code. The great majority of the machine dependent code 1is
written in C, and will have to be modified by hand. There are a
few parts of the kernel which are largely machine independent.
These routines will be recompiled and linked with the machine
dependent routines to produce an executable Unix kernel. A sum-
mary of the kernel modules being rehosted .and the work that is

anticipated for porting each to the Nebula is provided as Appen-
dix A.

3.1.1 Cesign and Implementation Goals

In designing the modifications to the Unix Kernel, several
goals are being pursued. These goals have, and will serve as
guidelines to aid in evaluating critical design decisions and
selecting implementations.

Implementation Dependencies

Tt is a goal to produce a Nebula/Unix system that can be
easily ported to another implementation of the Nebula (1862B)
architecture. The Nebula Architecture definition does not
specify the entire functionality of a Nebula computer. Many
features are defined to be Implementation Dependent. Operating
systems must interact with many of these implementation dependen-
cies, thus making it impossible to write a totally implementation
independent Nebula/Unix Kernel. The modifications will be per-
formed so as to minimize the work nceded to port the Brassboard
Nebula Unix to another hardware implementation. This will be
done by clearly commenting all implementation dependencies in the
source code. An attempt will be made to organize implementation
dependencies so that they may be easily identified and modified.

Use of MNebula Hardware

It i a goal to usce the Nebula hardware functionality when-

evor o appropriate. Al though 1t 15 a goal to make the Nebula/Unix
kernel amplementation andependent, design choices will exploit
the hardware imploementation of Lhe Brassboard system. The

-

2

,}-

2 :-'.({{5‘{4

RS

<.

A

"f &, “S;

LK) -
3 {H{':ﬁ

‘l
.S

b?fli‘fn’f -

-] '.' l.
¢2\\!'

S

hl 1

e,
' '.‘-r’ AN

4“:.

A ar l_"‘.’-{.-

/

rurTIg ¢
vy Q' ol

»

ﬁ?bf

o &

Ay,

Y .,
@L". 0

27
s<

¥
\‘
N
]

i . P . e .ol B, n® e’ e alis” G 200 l.l. 'y
RN R K L AN Y U Yy (YW Y A T e AR Sy NI L u g VAT Ny " " p T daVaVa Ca ¥ (VoM a n i

|‘|
6
" Ce-
I
iy
S exploitation will result in better performance and will not be
: done at the expense of the implementation independence goal.
3 This approach will aid in the evaluation of the Nebula hardware
o and the Brassboard implementation.
N
M Kernel Functionality
' It is a goal to maintain compatibility between the VAX Sys-
: tem V and the Nebula Unix kernels. Compatibility will reduce the
:J effort required to rehost other System V system commands and
0 utilities to the Nebula.
N Coding Conventions
. It is a goal to adhere to the same coding conventions and \
e, practices followed in the original System V Unix. These conven-,
: tions include global code organization, file, variable, function
3 naming conventions and code formatting conventions. These stan- h
. dards will aid programmers familiar with VAX System V Unix inter-

nals to maintain the Nebula Unix Kernel.
$$j Future System Enhancements
.* T
k" . .
‘ It is a goal to implement the Nebula Unix Kernel so as to N
< facilitate the addition of functionality; particularly Real-Time]
i and Secure Operating system features. Capacity limitations will ;
o be selected so as to allow for system expansions and modifica- ‘
) tions.
"l
> B,
-,)
j 3.1.2 Architectural Differences

The work that will be performed to modify the Unix Kernel
can be categorized along the architectural differences between
o the Nebula and the VAX machines. The two machines are dissimilar
in their implementation of virtual memory, I/0, procedure model ‘
and exception handling. Their non-privileged instruction sets, 3
addressing modes and interrupt handling structure are very simi-

.

ey

&, lar. R

LY

: Some of the modifications, such as the invocation of \
" privileged or Nebula ISA specific instructions and functions will iy
-, certainly be coded in assembler language. The great majority of
o4 the modifications will be performed by modifying the C code.

; 5
" Byte Ordering -
S The VAX and the Nebula are both byte addressable machines. :
o

The VAX addresses a word by the address of the least significant
byte. The Nebula addresses a word by the address of the most
significant byte. It i5 possible to write C code that is depen-
dent upon the addressing of bytes within a word. There is C code
in the Unix Kernel that assumes the byte ordering of the VAX,

.
W B TNT AT VAR .a; e N L T T Ay
AL Sy

L TRV T TS \\\'v'\ \\‘.'\'-'\'ﬁ'\
pUATUAO ’ pan

S Rl S 0080t S S a ¥y R A R R SRR

i,

This code will be modified to reflect the Nebula byte ordering.

Procedure Model

The difference between the Nebula and VAX procedure model
centers around the Nebula procedure context stack. The VAX Unix
Kernel occasionally manipulates the VAX User stack to modify a
process's flow of control. The fact that the general registers
of are allocated on the Nebula context stack also creates a rehost-
X ing problem. The implementation of the Unix process model has
8 been redesigned to take the implications of the Nebula context
K- stack into account. These modifications will effect context
. switching, virtual memory management, signal handling, non-local
gotos (longjmp) and process management functions.

-
T -

Manipulation of the Nebula context stack is extremely
implementation dependent. The Nebula architecture description
- does not fully define the format of the context stack content.
Similarly the context stack caching mechanisms are implementation
dependent. This implies that manipulating data in Nebula context
stack would be extremely implementation dependent., The caching
properties could pose very serious performance problems keeping
context memory data consistent with context cache. The Unix Ker-
nel will be modified so as to avoid manipulating the contents of
the context stack whenever possible.

e

-

Memory Management

The differences between the VAX and Nebula memory management
hardware are responsible for the most prevalent modifications
needed in performing a rehost from the VAX to the Nebula. The
memory mapping mechanism, protection mechanisms and virtual
address interpretation are very different. Manipulation of the

H memory management hardware is an integral part of Unix Kernel

& initialization, process creation, process switching, memory allo-
,j cation, memory trap handling, I/O operations and process tracing
[implementations. Since the impact of the memory management

¢ hardware is so broad, this area is expected to comprise the larg-
- est portion of the rehosting effort.

: Input/Qutput

The I/O systems of the Nebula and VAX are very different.
The Unix developers have been very careful to isolate the parts
of the kernel that perform machine dependent I/O operations. The
interface and structure of the code that performs machine depen-
dent 1/0 operations is flexible and very well defined. The
effort will consist of development of the device dependent
drivers and modification of the interface routines to handle the
Nebula/Unix process memory management. Modification and imple-
3 : mentation of these modules will be straight-forward.

Pl el S I

(- N AP INT SV N S R i ” Ve ™ Vo T g (g a ¥y R Al N R R N R e A Wl Yo A VRS WL W T R S B
| -,':; AN f,‘;,.f...'_./\.-.'.- AR o AT AT 0 1,70 " \ <A \ ALY, .',\4, > -.',-‘. o~ ot "\'1\.",'_\‘:;(4

Ta' RS0 Red b e bt 5 X > . . » N .

1 .,
§
¥

e e - e
i
w
|

" e, Y

SYC, Traps and Exceptions

The Supervisor Calls (SVC), Traps and Exceptions of the
Nebula are different from the VAX. The assembler code that han-
dles these events funnels the handling of the events through a
‘ single C procedure called trap. This minimizes the machine
dependence of these functions. It also provides a simple and
uniform state when entering the Kernel. Rehosting to the Nebula
will require writing of the system call and entry routines in
K assembler lanquage and modification of the trap function.

S S s

=)

Timer Support

The timer support of the Nebula is very close to that of the ’
 VAX. These modification will mostly entail changing code that

references VAX dependent hardware registers to Nebula dependent
hardware registers.

o

e B T o 2k Ik A

3.1.3 Kerne] Preparation and IPL

The Nebula System V Kernel image will be created using simi-
; lar technique as on the VAX. The Kernel will be compiled, assem-
. bled and linked on the VAX. The Nebula C compiler developed as
the first part of the project will be used to compile all C code.
The Nebula Assembler supplied by RADC will be used to assemble -
’ all output from the C compiler as well as the assembler language
& modules hand written as part of the Unix porting effort. Each
) object module produced by the Nebula assembler will be converted
< into the System V common object module (a.out)} format. This
3 conversion will be performed by a EUNICE hosted tool developed as
part of this effort. These modules will be linked by the System
. V linker (1d) to produce the Kernel executable image. The tools
y used in this process will be the same tools used to generate pro-
grams for execution under Nebula/Unix Kernel control.

A B R A

P I P

IO

'{ l, ." .t

1 4

“y v

On the VAX, the computer loads a small program into VAX
memory called the Bootstrap Loader. The VAX/Unix Bootstrap
Loader then locates and loads the Unix Kernel from the a.out
image on the root file system and passes control to the Kernel.
On the Nebula, the Nebula IPL feature will be used to load a
Bootstrap Loader. The Nebula/Unix Bootstrap will locate and load
the Unix Kernel using the same technique as on the VAX,

LR .,'.{..’-I.-‘.J

o
ool

3.1.4 Kernel Debugging

\ The Unix Kernel i35 a large multi-task program with many sub- RS
) tle real-time jnteractions. The most difficult parts to debug °
will be the low-level machine dependent initialization routines. -
‘ Thecse routines will be partially debugged using the Nebula simu- :
lator. This will greatly reduce the initial effort of getting)
the Hebula/Unix Kernel operating on the Brassboard system. :
o
K L)

B ST S T A
a : .

RACIAIF AP RPAF N

(R

. 19%)
bt 24t

e b - ? Mol atia A adus G- Safd 028 ¢ 0

" - ’ ey . g o
- w¥aw e N T T I P | 807 aa W 0 AN IS S B Sl e e Wy Wy W, T T

Unix has many self-consistency checks throughout the Kernel.
If one of these checks fails, a Panic usually occurs. A Panic
prints relevent information about the error on the console and
dumps main storage. A dump can be examined with Unix tools
(crash and adb) to determine the exact state of the operating
system when the panic occurred. These tools will be modified to

help debug the Nebula Unix kernel. They will be hosted on the
VAX/EUNICE system.

3.2 Nebula I/0 Channel Drivers

Because the Nebula I/0 structure is significantly different
from that of the VAX, the I/0 portion of the Unix rehost will
require modifications to the code that handles I/0 on the VAX.

The conversion of I/O routines for a generalized disk controller,’

a terminal, a console, and memory devices will be undertaken.
The approach to making these modifications will be to replicate
the functionality provided on the VAX on the Nebula Brassboard.

The console on the VAX makes use of specific registers and
addresses designed for the console; there is a separate con-
troller for the console. The Nebula has no such facility and the
console will have to be connected via the Serial Point to Point
(SPP) Channel on the Nebula. To do this will require modifying
the cons.c and ttl.c modules so that they will work on the SPP.
The SPP is significantly different from the VAX Massbus in that
it is a programmable controller which will support much of the

processing to be done in the controller rather than in the CPU as
is the case on the VAX.

The terminals for the Nebula will also be connected via the
SPP. On the VAX, terminals are usually attached via a Unibus dev-
ice. The Unibus device is controlled by a device driver along
with the ttl.c¢ and tty.c¢ terminal handling modules. On the
Nebula the terminals will be connected directly to the machine
through the SPP. This will require modifying the drivers and
terminal handling modules so that they will control the SPP chan-

nel. As with the console, much of the I/0O processing can be done
by the programmable controller.

The memory devices, which perform I/O on areas of memory,
will have to be modified to make use of the Nebula memory map—
ping. On the VAX, virtual addresses are translated by the I/0
routines to their physical location. A similar approach will be
used for the Nebula in that translation will be done by the I/0
routines using knowledge of the Nebula memory mapping scheme.

A disk system will be provided which will simulate a block

disk device using the Nebula memory space reserved for this pur-
i5¢ upon Unix Kernel initialization. Alternatively a disk can
be emulated 1n a remote computer (like the VAX) using a remote
disk connected via the 5PP. There will be provisions for a

A w o
SN, e AN

D A

et e AT e T et et e e e et aTalt et e e 4T e DU T P N S A S SN R T AN T
L T T e e T e e M R e e S T N AN AN N RTINS

52

it
AN e

£

:“. q.'v i

;zi

r
y.sr':'s‘-

- Vg’ a”)
. "..’-,'-,"-."-s"s‘ N

Maracs
8

X,
o

Ry

P

»

IR
. ""- o
. 'l . 20

R £
‘v‘\:j ‘x5 "l‘:l

»

e

o
Ty Ly o

DRAIA A
s{‘:'l)

oot
. Il{" ., L

PPl
"' 'l .l .

I B

2 Y e 4
oSy
AN,

Ul g
X
(s

vod ®

BN 4
.

P s

I'T..l'ﬁl.lv
RNy

S
.

RAAS AL

directly connected disk interfaced via the PPP channel. It may
not be possible to test PPP channel implementation if the

N hardware is not available.

AN 3.3 (Cross Development Toolget

‘(Q‘ J

' The Cross development toolset will be provided that will
Ny allow compilation of C programs on the VAX/EUNICE system and exe-

- cution on the Nebula Brassboard system. Programs will be
- automatically prepared on the VAX/EUNICE development system by
hS invoking a command procedure (shell script) to compile, assemble,

o convert, link and install the C program.

0 The C compiler has been developed as part of this effort. '
The Nebula Assembler lanquage generated by the C compiler is com- . '
pletely compatible with the standard Nebula Assembler provided by

. RADC. The Nebula Object modules produced by the Nebula Assembler ‘

ol will be converted by the Nebula Object module converter. This :
converter is currently being developed as part of this effort,

: and will be hosted on VMS/EUNICE. It will produce System V Com- !
o mon Object Module Format object modules. These modules will be '
" linked by the rehosted System V linker (1d) to form a System V g
o executable image. This image will also be in Common Object :

. Module Format, but will have the external references resolved.

. The executable image will be installed in the Nebula/Unix

e file system. This can be performed in one of two ways, depending

N upon the system configuration. The Nebula/Unix file system will

N reside either in Nebula main memory storage, or on a magnetic

- disk storage. If the file system is to reside in Nebula main

memory, an entire Unix file system will be built on the EUNICE
Y system and down-loaded as part of the Nebula/Unix IPL procedure.
\Y If the file system is to reside on a magnetic disk storage dev-
$ ice, the file system will be built on the EUNICE system and
" installed to serve as the initial root file system. Since there
o i1s currently no directly attached disk storage for the Brassboard
system, another computer will emulate a disk storage device over
a dedicated Serial Point to Point communications link. The com-
puter emulating the disk drive will maintain an image of the file
. system in a disk file. I/0 requests from the Nebula will be
translated into I/O requests to it's local file system.

N It will also be possible to down-load a program over a

" Serial Point to Point communications line, while the Unix system)
A 15 running. This will be accomplished by a procedure similar the)
0 that used to down-load to the CPP, except the receiving computer

- w1ll be the tebula.)

s,

L - - e [’ -~ v A P .
AL .
AR e S AR NN ARR RSO A

. . . ey a " . - . P - e TR CTR TR,
» .y 'f:'t' -“'J' " ‘l‘. f._’-,"-,"\"-."\"‘.'%' .'(-.d'.‘ AR AN “'\' VN ._ \ o,i \ > . N YN

L3 W YO RO TR WO KON R XV " mP WM oS B f® Ba® Rt o 0t gt N (X h R SO) O Aat il s fot Aoé
!

-
-

3.4 Bootstrap Toolset .

- -

A set of tools will be needed to generate and examine a

I boot-able root file system. The Unix utilities including mkfg,
i fsdb, fsck will be hosted on the VMS/EUNICE system and used to
j generate the image of a boot-able file system in a VMS/EUNICE
O file. These utilities allow the construction, interactive edit-
‘ ing and consistency checking of the Unix file system. Depending

upon the availability of a disk storage device, the image will

either be down-loaded into a Nebula disk storage device, or h
N incorporated as part of the Nebula/Unix Kernel image by the .
,: Bootstrap program.
N
R

3.5 Nebula Hosted Toolset
y The Nebula hosted toolset will be derived from the standard ﬁ
g} System V toolset. Since these utilities are largely machine .
: independent and written in C, they may be rehosted to the Nebula
) by recompilation of the C source code and installation into the

Nebula file system. The toolset will include only those tools
" which are either machine independent, or are vital to the normal "
o operation of Nebula/Unix. A summary of the non-kernel Unix tools -
. to be ported to Nebula is presented in Appendix B. Tt should be %
: noted that the ability to access the entire toolset at once may “
) be impossible due to memory or disk limitations.
5 ;
. 3
L] ‘
- X
: A
- .
N .
- :

]

? .
! L)
’-..- -, .f; > p .,"\.'- e -'\-_.; \-,‘:(;‘. L 3 \ \.~¢ 'f‘.:-" ‘.\..,-', _ . '\'\ f_\ e o™ :..’-..‘_\’-.'.\,\(-.J_\._\ ~ \'I,__:."'._,\ \f'l"f\"‘-"fnr

2 K S st BRI L YA AASRS AANARSAAARI S Pa 2 et he i AT Sa S A A AL SNE L PN

¢ 4 Fupctigpality of the Ported Upix

o The Nebula System V Kernel will provide a subset of the VAX
o System V Kernel functionality. Many of the modules not ported
Al from the original VAX System V subset have been deleted because
they support devices only available on the VAX. The subset has
o

been selected so as to support all the functionality specified in
of the statement of work (paragraph 4.2.1).

2 4.1 Kerne bset

o

\ The statement of work specifies that the contractor should
define a.subset of the Unix Kernel to port to the Nebula hardware

o (paragraph 4.2). Some of the functionality of the VAX Unix Ker-
h nel will not be ported to the Nebula because the hardware support
] for is not available on the Nebula. There are a few large
> optional subsystems of the System V Kernel that are not required
e by the statement of work. The following features of the VAX Sys-
tem V Rernel will not be fully supported by the ported

-{ Nebula/Unix Rernel:

~

} l. The ptrace(2) system call shall be limited. Certain

" accesses of the traced child's memory space (Context stack)
{ﬂ will not be allowed. Full access of this system call on the

Nebula would jeopardize system security and system
integrity.
w .
2 2. Nebula/Unix will not support the X25 network communications
o, protocol.
{
3. The o0ld file system format (512 byte block size) will be

W implemented, but not tested. The new file system fcrmat
‘j (1024 byte block) yields larger capacity and better perfor-

Y mance. The old file system is available on the VAX strictly

" for backward compatibility.

W

' 4. The optional shared memory system calls will be implemented,

. but not fully tested. A
N)
”a 5. The optional semaphore system calls will be implemented, but ’
"t

. not fully tested.
- 3

' 6. The optional message system calls will be implemented, but

" not fully tested.

o 7. The optional virtual terminal i1nterfaces will be imple-
N mented, but not fully tested. '
.
N , \
\ If unimplemented features are invoked by a user program, \
:,' crror status codes will be returned.
3 .
LJ H
’:; :
II

I’ , - - - e~ a~8a A g . - ow - et m Tt owt Mt R -
T N g g e M N e N R

(i

4.2 Unix Extensions

In addition to the standard VAX System V Unix Kernel func-
tionality, the Nebula/Unix will pruvide a capability for:

1. Memory resident file system.

2. Remote magnetic disk emulation,

These features will be added to the Kernel to facilitate
testing and utility of the Nebula/Unix port in lieu of access to
a directly connected high speed disk device.

The memory resident file system will be a region of physical,
memory reserved for virtual disk device. The virtual disk device
will be a block-type special device suitable for mounting a file
system. This device will be used to test file system functional-

ity in the absence of a directly connected magnetic disk storage
device.

The remote disk device will be a block-type special device
that will service I/0 requests by communicating with a remote
machine emulating a disk drive. The communications will take
place over a Serial communications line. Note that this approach
will greatly augment the utility of the Nebula/Unix system until
a directly connected magnetic disk storage device becomes avail-
able. The relatively low speed of the Serial interface will have
a serious negative effect upon the Unix system performance.

S '.",‘y’ﬁf"' 1":"-':".:-.{, .,'_;I‘;I\-‘“f_.-".f\f

“w ¢ v
(LIS
PN 3

FLELD

- Vs

s
e

e dd AT e
o 5 o

v

"-,'-‘:ﬂ. ‘}f‘(‘ .’ﬁ ‘, "

SenAE,
PN

-~

DEERE A J
P

CC A

L L TN o\
o ‘;;‘.:‘.’\2\-' "~

N

. e b A At A Bl A B SR 0 gt fat fab 48 Eb * fa¥ofet
¥ va8 ak “al N OWVLIW N SV UV LW, W W ¢ W W X VK 3 a2 sfat2leh Bat a0 8 - u - - M a¥ d wFaae Py

‘&J‘
s
"
- 14 - Appendix A ;f
b
43
Nebula/Unix Hosted Toolset s
. . . [
Appendix A summarizes Unix tools that were ported to the -
Nebula/Unix system. The following tools are executable on the A
Nebula/Unix system except for I/O problems. kf
o
at -- execute commands at a later time &
awk —-— pattern scanning and processing language
banner -— make posters k_
basename -- deliver portions of path names -
be -- arbitrary-precision arithmetic language ro
cal -—- print a calendar &
cat -- concatenate and print files h
cd -— change directories »
chmod —-— change mode -
chown -- change owner , o
chroot -— change root directory for a command -i
cmp -- compare two files o]
comm —-— select or reject lines common to two sorted files s
cp -- copy files ,
cron -— clock deamon "
crypt -- encode/decode o
date -- print and set the date e
dc -- desk calculator e
dd -- convert and copy a file N
df -— report number of free disk blocks
diff —-- differential file comparator <
diff3 -- 3-way differential file comparison o
dircmp -- directory comparison 2
du -— summarize disk usage :i
echo ~-- echo arguments h2
ed -—- text editor .
env -~ set environment for command execution -
expr —-— evaluate arguments as an expression -
factor —-—- factor a number ?ﬁ
file -- determine a file type ~
find -~ find files O
getopt -- parse command options L
getty -- set terminal type, modes, speed, and line discipline -
grep —-- search a file for a pattern RS
id -—- print user and group IDs and names e
init -- process control initialization)
join -- relational database operator ol
kill -- terminate a process ®
killall =-- kill all active processes o
line -- read one line <3
In -- link files -
login -- s5ign on A
logname -~ get login name A
ls -- list contents of a directory . B _
machid -- provide truth value about your processor type ol
mesqg -- permit or deny messages e

.
'q-
’
- 15 - Appendix A "~
',,\-
‘-,
mkdir -- make a directory ::
mount -—- mount and dismount file system :
mv -- move files b
. ncheck -- generate names from i~numbers ;
nice -- run a command at low priority .
nl -- line numbering filter
nm -- print name list of common object file .
nohup -- run a command immune to hangups and quits
od -- octal dump
pack -- compress and expand files
passwd —-- change login password
paste ~- merge same lines of several files or subsequent
lines of one file
pg -- file perusal filter for soft-copy terminals
pr -- print files to standard output
ps —-— report process status
pwd -— working directory name :
rm -- remove files
rmdir -— remove directories
sed -— stream editor
setmnt -—- establish mount table
sh —-— shell, the standard command programming language
shutdown -- terminal all processing
size -- print section sizes of common object files
sleep —-- suspend execution for interval
sort -~ sort and/or merge files
stty -— set the options for a terminal
su -— become super—-user or another user
sum -- print checksum and block count of a file
sync -— update the super block
tail -- deliver the last part of a file
tee -- pipe fitting
test -- condition evaluation command
touch —-- update access and modification times of a file -
tput -- query terminfo database o
tr -- translate characters N
true -- provide truth values .
tty -- get the name of the terminal o
umask -— set file-creation mode mask ®
uname -- print name of current Unix system N
uniq -— report repeated lines in a file N,
units -- conversion program -
wait -- await completion of process N
wall -- write to all users -
wC -- word count %
who -~ who is on the system b
write -- write to another user .
Xargs —= construct argument lists and execute command

-!' ¥ l""-
[X, /.‘ A

'-F,;J'\.l' '.r_.r,\vﬁ_.-\w\.r,_.-...','.r

~

S R P
e, e e W T e

P I N S I R KR K RIC I K X K TR - o ot A ogd Syt Pty Btabin e pun et M v
Pt
”
'y
‘.
(]
;
g
WWMWMO N
o
of :
Rome Air Development Center]
. s
\
RADC plans and executes neseanch, development, test Ny
and selected acquisition programs in Suppont 0§ N
Command, Controf, Communications and Intelligence
(C31) activities. Technical and engineening :
duppont within areas of competence is provided to R
ESD Program Offices (POs) and othen ESD elements .
2o pengorm effective acquisdition of C31 systems. N
The areas of technical competence <include +]
commundications, command and controf, battle
management, Linformation processing, surveillance .
densons, 4intelligence data collection and handling, ¢
sclid state scdences, electromagnetics, and &
propagation, and electronic, maintainabifity, 1 <
and compatibility. :% 3
*
% ~
q k S
RS S SR SR XA SR SR S S SN A SR 3
¢
'
LY 2

AL SN K RILIE Ty T N N AT TR A T .ty Tae - \
B B T T N e N AT AT TR WIS, SR 0 L S L SASASAGTS
-t . - . A)

B e
q &H 1’

Y
N
3
N
v

e A R i > R

= TI/C

f\-'\f\f\f\v‘ \al f\‘-'

. P T T U T Y.
VORCNEATRINAG OO AN A PN Ny

